雙子貓 wrote:
討論歸討論,但你可不可以不要在相關討論串裡一直強調你考過聯考,數學拿滿分,學過很難很難很難很難很難很難很難很難很難很難很難~~~(打不了五十萬個)~~~~~很難的XX學,所以「大家都是笨蛋,就你最聰明」的嗆辣語氣來教訓大家呢?...(恕刪)
補充:不寫XX學是怕引起更多爭吵
總之是數學的一門
我並沒有認為我這科很強
純粹只是覺得很多網友數學不知怎樣,卻可以拿新聞質疑別的網友不認同新聞就是錯的
另外前面也有網友提到自己數學並沒有很低分
我想您多慮了,論高手,我還排很後面
低手如我都會有疑惑了,何況高手?
(真正高手大概懶得回答這種有缺陷的問題吧?)
有些話看看就好 真實人生並不是有錢人或美女就可以無往不利予取予求
TA292001 wrote:
http://www...(恕刪)
依據你貼的link
我很認真的recall離我至少十年之遠的某學
發現我算的跟網頁一樣
何以兄台會認為這不該省略乘號?
那個連結裡面,括號前面幾乎全部都省略乘號好嗎
但是運算都是以有乘號的假設來運算的
(網友有興趣可以算一下,如果忽略乘號,算式能不能算下去,還有結果是不是一樣...)
第一,它遵循所謂小括號算至大括號的原則 (而且必要的時候都有加上中括號)
第二,沒有寫1的時候等於有1 (1與乘號都很常被省略)
第三,仍遵循先乘除後加減,一樣由左而右,但因為括號綁住某些算式,所以括號綁住的必須先算
算完再回來算與前面或者後面其他東西的計算
另外轉貼link裡面寫的這段話 (在第一頁)
If you are asked to simplify something like "4 + 2×3", the question that naturally arises is "Which way do I do this? Because there are two options!":
Choice 1: 4 + 2×3 = (4 + 2)×3 = 6×3 = 18
Choice 2: 4 + 2×3 = 4 + (2×3) = 4 + 6 = 10
It seems as though the answer depends on which way you look at the problem. But we can't have this kind of flexibility in mathematics; math won't work if you can't be sure of the answer, or if the exact same problem can calculate to two or more different answers. To eliminate this confusion, we have some rules of precedence, established at least as far back as the 1500s, called the "order of operations". The "operations" are addition, subtraction, multiplication, division, exponentiation, and grouping; the "order" of these operations states which operations take precedence (are taken care of) before which other operations.
有些話看看就好 真實人生並不是有錢人或美女就可以無往不利予取予求




























































































