這是邏輯問題帽子分布的情況只可能有三種: 2紅1藍 , 1紅2藍 , 或 3藍a. 2紅1藍 -> 一定有一個人"馬上"知道自己是藍色, 跟題目不合 (level 0)b. 1紅2藍 -> 看到1紅1藍的人一定知道自己是藍色, 否則另一個人會看到2紅而馬上回答, 所以也跟題目不合 (level 1)c. 3藍 -> 所有人都看到2藍, 必須確定沒有人會看到1紅1藍, 才能判斷自己是藍色 (level 2)這個題目出的不太好因為要說是狀況b或c都可以思考的時間長短 實在不是個好條件
藍紅紅-->只可能有兩個紅色.所以藍色那個絕對會搶答說自己是藍色.藍藍紅-->紅頭巾看到藍藍不敢搶答,藍頭巾兩個都看到紅藍也沒敢搶答,因為沒人搶答所以可以排除紅紅,藍頭巾可以回答是藍色.藍藍藍-->三個人看到的都是藍藍,看很久沒人敢回答,所以可以排除有紅色頭巾的出現,任何人都可以回答是藍色.請不要把自己帶入這個邏輯中,以旁觀者身份去看這一題.就會看到有人舉手說自己是藍色.ps:戴紅色頭巾的人必死無疑.
邏輯不好, 不過來分享一下好了...三個人, 兩種顏色組合, 所以會出現的模式如下:藍藍藍 藍藍紅 紅紅藍, 在沒有三個紅的情形下, 只會有這三種case其中紅紅藍是絕對不可能的, 因為在只赦免一個人的條件下, 紅紅藍的組合形同直接給答案, 而不會陷入三人考慮的狀態;因此, 只有前兩者組合有可能, 而在三人之中, 拿到藍的機率為2/3, 紅為1/3, 也就是說, 當今天三個人猶豫時, 三人眼前所見, 為兩藍或是一藍一紅的情形, 同時 因為只赦免一人, 所以三個人之中無論如何兩個人都會被砍頭, 先猜藍的人, 有2/3的機會可以活命後猜的人, 則只剩1/2的機會可以活命, 如果考量到另一個未知條件--"如果三人都猜錯, 三人都處死", 那只有最先猜藍的人 才最有機會活命這題應該三人都是藍色, 因為當有其中一人看到紅色時, 基本上就可以猜自己是藍色了, 只有在三人都是藍色時, 才會有考慮的情形