- 9/10 修正解法 1定理一:∠EAC = ∠ECA = (180° - ∠E) / 2 = 62°∠ACB = 180° - ∠ECA - ∠BCF = 80°x = 80 #∠CBF = ∠BCF = 38°∠F = 180° - ∠CBF - ∠BCF = 104°∠D = 180° - ∠F - ∠E = 20°y = 20 #∠DAB = (180° - ∠D) / 2 = 80°∠CAB = 180° - ∠DAB - ∠EAC = 38°z = 38 # 解法 2定理二:∠CAB = ∠BCF = 38°z = 38 #由定理一得 ∠ECA = (180° - ∠E) / 2 = 62°∠ACB = 180° - ∠ECA - ∠BCF = 80°x = 80 #∠DAB = ∠DBA = ∠ACB = 80°∠D = 180° - ∠DAB - ∠DBA = 20°y = 20 #
- 9/10 修正定理一:證明:B、C 為切點 => OB ⊥ BA,OC ⊥ CA,OB = OC=> △OBA ≅ △OCA (RHS 全等)=> AB = AC #=> ∠ABC = ∠ACB # 定理一 (使用定理二):證明:D 為圓上一點。作 DB、DC 兩線段。由定理二,∠1 = ∠3,∠2 = ∠3=> ∠1 = ∠2 #=> AB = AC # 定理二:證明:∠AOC = 2∠1 = ∠FOA + ∠FOC = 2∠3 + 2∠4 = 2(∠3 + ∠4)=> ∠3 + ∠4 = ∠1 => ∠ADC = ∠BAC #